3.8 This problem provides a numerical example of encryption using a one-round version of DES. We start with
the same bit pattern for the key K and the plaintext, namely:
in hexadecimal notation: 0 1 2 3 4 5 6 7 8 9 A B C D E F
in binary notation: 0000 0001 0010 0011 0100 0101 0110 0111
1000 1001 1010 1011 0100 1101 1110 1111
a. Derive K1, the first-round subkey.
b. Derive L0, R0.
c. Expand R0 to get E[R0], where E[·] is the expansion function of Figure 3.8.
d. Calculate A = E[R0] K1.
Group the 48-bit result of (
d) into sets of 6 bits and evaluate the corresponding S-box
substitutions.
e. Group the 48-bit result of (
d) into sets of 6 bits and evaluate the corresponding S-box
substitutions.
f. Concatenate the results of (
e) to get a 32-bit result, B.
g. Apply the permutation to get P(B).
h. Calculate R1 = P(B) L0.
i. Write down the ciphertext.
 
 
View Solution
 
 
 
<< Back Next >>